TBS

Vis à tête large

Acier au carbone, zingué blanc

PACKAGING

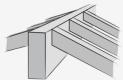
Boîte + notice CE + embout

ACIER SPÉCIAL

acier de grande ductilité (suivant les mouvements du bois) et très résistant ($f_{yk} = 1000 \text{ N/mm}^2$)

FILETAGE SPÉCIAL

Filetage asymétrique « en parapluie » pour une meilleure pénétration dans le bois


DURABILITÉ

Revêtement de finition au chrome Cr³+ en remplacement du chrome hexavalent Cr⁵

DOMAINES D'UTILISATION

Pour tout assemblage sur bois massif, bois lamellé-collé, panneaux massifs contrecollés, lamifié LVL, panneaux à base de bois. Classes de service 1 et 2.

TENUE DE L'ASSEMBLAGE

La tête large de la vis garantit une forte résistance à la traction qui permet de se passer de systèmes additionnels d'ancrage latéral

FERMETURE DE L'ASSEMBLAGE

La tête large de la vis autorise un assemblage bien fermé ; le diamètre de la tête est optimisé en fonction de la longueur du filetage

STABILITÉ DE L'ASSEMBLAGE

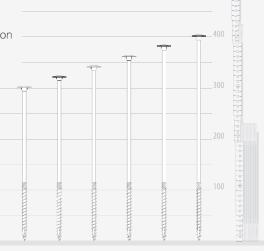
La tête large de la vis assure une grande résistance à la pénétration et la stabilisation d'assemblages soumis aux des variations dimensionnelles du bois

Applications

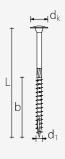
Fixation angulaire de cloisons en panneaux massifs contrecollés (X-Lam), avec fermeture optimale de la jonction

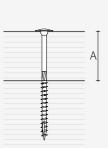
Fixation angulaire de cloisons sur ossature, avec fermeture optimale de la jonction

Fixation de panneaux en en fibro-plâtre



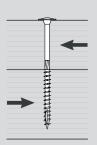
Gamme


La tête large garantit une force de serrage élevée et permet d'avoir un filetage plus long que dans une vis à la tête traditionnelle. Le diamètre de la tête (dk) est calculé en fonction de la longueur du filetage en vue d'obtenir une proportion parfaite entre la résistance à la pénétration de la tête et la force de serrage du filet ; le risque de surfilage de la vis est ainsi évité. Les vis de diamètre 8mm et longueur de 40mm à 80mm conviennent surtout à la fixation de plaques en acier.



convient surtout aux plaques

Codes et dimensions



d ₁ [mm]	$\mathbf{d_k}$ [mm]	code	L [mm]	b [mm]	A [mm]	pc./emb
		TBS680	80	50	30	
6		TBS6100	100	60	40	
6		TBS6120	120	75	45	
TX30		TBS6140	140	75	65	
		TBS6160	160	75	85	
	15,5	TBS6180	180	75	105	50
	۱۵٫۵	TBS6200	200	75	125	30
		TBS6220	220	100	120	
		TBS6240	240	100	140	
		TBS6260	260	100	160	
		TBS6280	280	100	180	
		TBS6300	300	100	200	
		TBS840	40	32	8	
0		TBS860	60	52	10	
8 TV40		TBS880	80	52	28	
TX40		TBS8100	100	80	20	
		TBS8120	120	80	40	
		TBS8140	140	80	60	
		TBS8160	160	100	60	
		TBS8180	180	100	80	
		TBS8200	200	100	100	
	19	TBS8220	220	100	120	50
		TBS8240	240	100	140	
		TBS8260	260	100	160	
		TBS8280	280	100	180	
		TBS8300	300	100	200	
		TBS8320	320	100	220	
		TBS8340	340	100	240	
		TBS8360	360	100	260	
		TBS8380	380	100	280	
		TBS8400	400	100	300	
		TBS10160	160	80	80	
10		TBS10180	180	80	100	
10		TBS10200	200	100	100	
TX40		TBS10220	220	100	120	
		TBS10240	240	100	140	
		TBS10260	260	100	160	
	25	TBS10280	280	100	180	50
	_5	TBS10300	300	100	200	
		TBS10320	320	100	220	
		TBS10340	340	100	240	
		TBS10360	360	100	260	
		TBS10380	380	100	280	
		TBS10400	400	100	300	

La statique du charpentier

CISAILLEMENT V_{adm}

BOIS-BOIS

d_1 [mm]	L [mm]	V_{adm}
6	≥ 80	61 kg
8	≥ 120	109 kg
10	≥ 160	170 kg

EXTRACTION FILET Nadm

	Longueur E [mini]									
\mathbf{d}_1 [mm]	40	60	80	100	120 - 140	160	180	200	220 - 300	320-400
6	-	-	150 kg	180 kg	225 kg	225 kg	225 kg	225 kg	300 kg	-
8	128 kg	208 kg	208 kg	320 kg	320 kg	400 kg	400 kg	400 kg	400 kg	400 kg
10	-	-	-	-	-	400 kg	400 kg	500 kg	500 kg	500 kg

Longueur | [mm]

PÉNÉTRATION TÊTE N_{adm}

d ₁ [mm]	N_{adm}
6	120 kg
8	181 kg
10	281 kg

FORMULES DE CALCUL - CISAILLEMENT DIN 1052-2:1988

BOIS-BOIS

 $V_{adm} = min \{ 0,4 \cdot A \cdot d_1; 1,7 \cdot d_1^{2} \}$ $d_1 [mm]$

A [mm]

 V_{adm} [kg]

EXEMPLE BOIS-BOIS

TBS 6 x 160 mm $d_1 = 6 \text{ mm}$ $V_{adm} = min \{ 0,4 \cdot A \cdot d_1; 1,7 \cdot d_1^{-2} \}$

A = 85 mm $V_{adm} = min \{0.4 \cdot 85 \cdot 6; 1.7 \cdot 6^2\} = min \{204; 61\} = 61 \text{ kg}$

REMARQUES

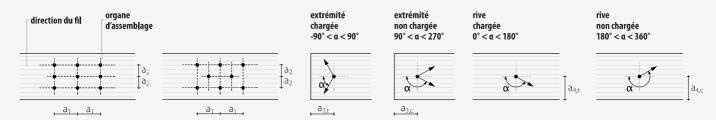
- Les valeurs admissibles sont calculées selon la norme DIN 1052:1988.
- Les valeurs admissibles au cisaillement sont calculées sur une longueur d'enfoncement de 8 $\rm d_{\rm 1}$
- Les valeurs admissibles à l'extraction sont calculées en considérant que la partie filetée est complètement enfoncée dans l'élément en bois.

Géométrie et distances minimales

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

Vis TBS				
Diamètre nominal	d ₁ [mm]	6	8	10
Diamètre tête	d _K [mm]	15,50	19,00	25,00
Diamètre noyau	d ₂ [mm]	3,95	5,40	6,40
Diamètre tige	d _s [mm]	4,30	5,80	7,00
Diamètre avant-trou	d _v [mm]	4,0	5,0	6,0
Moment caractéristique d'élasticité	M _{v.k} [Nmm]	9493,7	20057,5	35829,6
Paramètre caractéristique de résistance à l'extraction	f _{ax.k} [N/mm ²]	11,7	11,7	11,7
Paramètre caractéristique de pénétration de la tête	f _{head,k} [N/mm ²]	10,5	10,5	10,5
Résistance caractéristique à la traction	f _{tens,k} [kN]	11,3	20,1	31,4

DISTANCES MINIMALES POUR VIS SOUMISES AU CISAILLEMENT



Angle entre effort et fil $\alpha=90^\circ$

VIS ENFONCÉES AVEC AVANT-TROU								
	6	8	10	6	8	10		
a ₁ [mm]	30	40	50	24	32	40		
a ₂ [mm]	18	24	30	24	32	40		
a _{3,t} [mm]	72	96	120	42	56	70		
$\mathbf{a}_{3,c}$ [mm]	42	56	70	42	56	70		
a _{4,t} [mm]	18	24	30	42	56	70		
a _{4.c} [mm]	18	24	30	18	24	30		

	VIS ENFONCÉES SANS AVANT-TROU							
	6	8	10	6	8	10		
a ₁ [mm]	72	96	120	30	40	50		
a ₂ [mm]	30	40	50	30	40	50		
a _{3,t} [mm]	90	120	150	60	80	100		
$\mathbf{a}_{3,c}$ [mm]	60	80	100	60	80	100		
a _{4,t} [mm]	30	40	50	60	80	100		
$\mathbf{a}_{4,c}$ [mm]	30	40	50	30	40	50		

REMARQUES

- Les distances minimales s'en tiennent à la norme EN 1995:2008 conformément à l'ETA-11/0030 en considérant une masse volumique des éléments en bois égale à $\rho_k \le 420 \ kg/m^3$.
- Dans le cas d'un assemblage OSB-bois les distances minimales (a_1, a_2) peuvent être multipliées par un coefficient de 0,85.