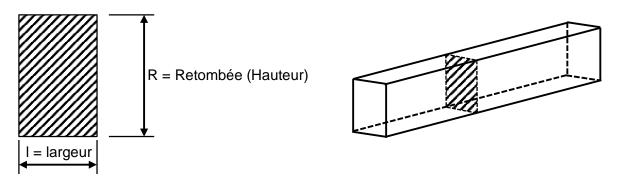
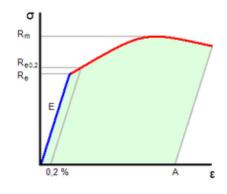

CARACTERISTIQUES DES POUTRES ET POTEAUX


MODELISATION D'UN MATERIAU

PORTEE, SECTION

La portée désigne la longueur libre entre appuis :


La section désigne les deux dimensions d'une coupe transversale de la poutre :

La surface S de la section, est le produit des deux dimensions de la section.

ELASTICITE

Le **module de Young** ou **module d'élasticité (longitudinale)** ou encore **module de traction** est la constante qui relie la contrainte de traction (ou de compression) et la déformation pour un matériau élastique. La <u>loi de Hooke</u> précise que, dans le domaine élastique du matériau, les déformations sont proportionnelles aux contraintes :

$$\varepsilon = \frac{\ell - \ell_0}{\ell_0} = \frac{\ell}{\ell_0} - 1$$

La contrainte normale σ est proportionnelle à l'allongement relatif ε et un facteur constant E désigné sous le nom de **module d'élasticité ou encore module d'Young** (valable uniquement pour les petits déplacements).

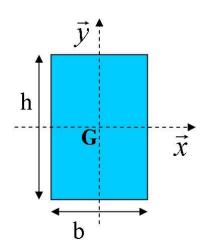
$$\sigma = E \varepsilon$$

- **o** s'exprime en **Pa** ou **N/m²** et plus souvent en **MPa ou N/mm²**;
- E est homogène à une contrainte [MPa] ;
- E est sans dimension.

L'allongement relatif arepsilon est le rapport entre longueurs initiale ℓ_0 et finale ℓ

Il ne faut cependant pas confondre élasticité et rigidité puisque la raideur d'une poutre dépend de son module d'Young mais aussi du moment quadratique de sa section.

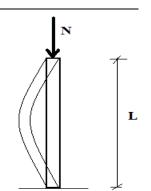
CARACTERISTIQUES DES POUTRES ET POTEAUX


MOMENT QUADRATIQUE

Le moment quadratique est une grandeur qui caractérise la géométrie d'une section et se définit par rapport à un axe ou un point. Il s'exprime dans le système international en m⁴, (mètre à la puissance 4).

Le moment quadratique est utilisé en résistance des matériaux, il est indispensable pour calculer la résistance et la déformation des poutres sollicitées en flexion (I_x et I_y). En effet, la résistance d'une section sollicitée selon un axe donné varie avec son moment quadratique selon cet axe.

 $I_y = \frac{h \cdot b^3}{12}$


$$I_x = \frac{b \cdot h^3}{12}$$

FLAMBEMENT (COMPRESSION AXIALE)

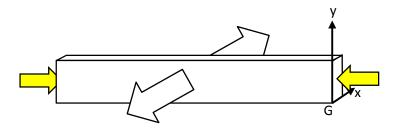
→ Section droite rectangulaire :

Le flambage ou flambement est un phénomène d'instabilité d'un élément de structure long et mince, qui soumit à un effort normal de compression, à tendance à fléchir et se déformer dans une direction perpendiculaire à l'axe de compression (passage d'un état de compression à un état de flexion).

→ LA LONGUEUR DE FLAMBEMENT (LCR) DEPEND DU TYPE DE LIAISON D'EXTREMITE :

Types de liaisons	Valeurs de <i>L</i>	Types de liaisons	Valeurs de <i>L</i>
① En A et B : liaisons pivots.	$A \uparrow - \vec{F}$	③ En A et B: liaisons encastrement.	$ \begin{array}{c c} \hline F_{1} \\ B \\ \hline A \\ \hline -F \end{array} $ $ \begin{array}{c c} L = \frac{\ell}{2} \end{array} $
② En A : liaison encastrement. En B : extrémité libre.	$ \begin{array}{c c} B & \overrightarrow{F} \\ \hline A & \\ -F & \\ \end{array} $ $ L = 2\ell $	④ En A: liaison encastrement. En B: liaison pivot.	$ \begin{array}{c c} \vec{F} \\ B \\ A \\ 7/2 \\ -\vec{F} \end{array} $ $ \begin{array}{c c} L = 0.7\ell \end{array} $

CARACTERISTIQUES DES POUTRES ET POTEAUX


RAYON DE GIRATION (COMPRESSION AXIALE)

Le rayon de giration i est une quantité, homogène à une longueur, dont le carré est égal au rapport du moment quadratique I sur l'aire S d'une section :

$$i = \sqrt{\frac{I}{S}}$$

→ IL QUANTIFIE LA TENDANCE D'UNE SECTION A PLIER AUTOUR DE L'AXE DE PLUS FAIBLE MOMENT QUADRATIQUE, DANS UNE DIRECTION PERPENDICULAIRE A CELUI-CI.

Dans l'exemple suivant, ly est inférieur à Ix, le rayon iy est inférieur à ix (solive à chant), le cintrage apparaître dans la direction (G,x) autour de l'axe (G,y).

ELANCEMENT MECANIQUE (COMPRESSION AXIALE)

Une fois le rayon de giration minimum défini (si la section est rectangulaire), on connait la direction privilégiée de flambement.

On fait intervenir un coefficient (sans unité) : L'élancement mécanique λ ,

→ LE RISQUE DE FLAMBAGE AUGMENTE SI LA POUTRE EST LONGUE ET SES DIMENSIONS TRANSVERSALES SONT FAIBLES.

$$\lambda = \frac{Lcr}{i \ mini}$$

CARACTERISTIQUES DES POUTRES ET POTEAUX

EXERCICE

- 1. Calculer de l'aire de la section droite ;
- 2. Calculer le moment quadratique I des sections suivantes ;
- 3. Calculer le rayon de giration i ;
- 4. Conclure sur la direction supposée du flambage en compression axiale.
- 5. Calculer l'élancement mécanique de la poutre

	Section 1		Section 2
	$ \begin{array}{c} \downarrow \\ h \\ \downarrow G \\ \downarrow \\ b \end{array} $		G X
Données :	b = 100 mm h = 200 mm L = 4.00 m		b = h = 150 mm L = 2.50 m
1. Calcul de l'aire :	S =		S =
Calcul du moment quadratique :	lx = lx =	ly = ly =	
3. Calcul du rayon de giration :	ix =	iy =	ix = iy =
4. Direction de flambement privilégiée :	,		
5. Calcul de l'élancement mécanique :	λ =		λ =